Project Euler 370
题目
Geometric triangles
Let us define a geometric triangle as an integer sided
triangle with sides \(a \le b \le c\)
so that its sides form a geometric progression ,
i.e. \(b^2=a\cdot c\) .
An example of such a geometric triangle is the triangle with sides
\(a = 144, b = 156\) and \(c = 169\) .
There are \(861805\) geometric
triangles with perimeter \(\le 10^6\)
.
How many geometric triangles exist with perimeter \(\le 2.5\cdot10^{13}\) ?
解决方案
Project Euler 370
题解:Geometric triangles
题目要求整数边三角形 \(a\le b\le
c\) ,且三边成等比数列,即\(b^2=a\cdot
c.\) 令 \(g=\gcd(a,c)\) ,写成
\(a=gu,c=gv,\gcd(u,v)=1.\) 代回 \(b^2=ac\) 得\(b^2=g^2uv.\)
因此 \(u,v\) 是完全平方数。由于
\(\gcd(u,v)=1\) ,只能是\(u=n_0^2, v=x_0^2,
\gcd(n_0,x_0)=1,\) 从而\(a=g,n_0^2,
b=g,n_0x_0, c=g,x_0^2.\)
接下来把 \(g\) 拆成无平方因子部分
\(\times\) 平方数”:\(g=st^2,\) 其中 \(s\) 为无平方因子(squarefree),\(t\ge 1\) 为整数。于是\(a=s(tn_0)^2, b=s(tn_0)(tx_0),
c=s(tx_0)^2.\) 令\(n=tn_0,
x=tx_0,\) 得到统一形式
\[
(a,b,c)=(s n^2,s n x,s x^2),
\]
其中 \(s\) 是无平方因子数,且 \(n,x\) 为正整数。
唯一性说明: \(g=\gcd(a,c)\) 唯一确定;\(g=s t^2\) 的分解(\(s\) 取无平方因子部分)唯一;\(u=a/g\) 与 \(v=c/g\) 唯一,进而 \(n_0=\sqrt u,x_0=\sqrt v\) 唯一;于是 \(n=tn_0,x=tx_0\)
唯一。因此每个几何三角形对应唯一三元组 \((n,x,s)\) 。
对边\(a=s n^2, b=s n x, c=s
x^2\) 只需检查 \(a+b>c\) (其余两条显然成立),化简得\(n^2+n
x>x^2\Longleftrightarrow\left(\dfrac{x}{n}\right)^2-\left(\dfrac{x}{n}\right)-1<0.\)
设黄金比例\(\varphi=\dfrac{1+\sqrt5}{2},\) 则上述二次不等式等价于\(1\le \dfrac{x}{n}<\varphi,\) 也就是\(n\le x<\varphi n.\)
那么周长为\(a+b+c=s(n^2+n
x+x^2).\) 记\(D(n,x)=n^2+n
x+x^2,\) 题目要求\(s\cdot D(n,x)\le
P.\) 对固定的 \((n,x)\) ,允许的
\(s\) (无平方因子)满足\(1\le s\le \left\lfloor
\dfrac{P}{D(n,x)}\right\rfloor.\) 因此总答案是
\[
\sum_{\substack{n\ge 1\\ n\le x<\varphi n\\D(n,x)\le P}}
Q\left(\left\lfloor\frac{P}{D(n,x)}\right\rfloor\right),
\]
其中 \(Q(m)\) 表示 \(\le m\) 的无平方因子数个数(包含 \(1\) )。
基于容斥原理,我们可以通过莫比乌斯函数\(\mu\) 得到\(\displaystyle{Q(m)=\sum_{d=1}^{\lfloor\sqrt
m\rfloor}\mu(d)\left\lfloor\frac{m}{d^2}\right\rfloor.}\)
当进行计算时,直接遍历所有 \((n,x)\)
不可行,因为 \(n\) 最大可达约 \(\sqrt{P/3}\) 。
选一个分界 \(N\) ,分两部分计数:
对于对每个 \(n\le N\) ,枚举所有\(x\in [n,\lfloor\varphi n\rfloor]\)
(严格不等式 \(x<\varphi n\) 因为
\(\varphi n\) 不会是整数,可直接用
\(\lfloor\varphi
n\rfloor\) )。统计每个值\(D=n^2+nx+x^2\) 出现次数 \(\text{cnt}[D]\) ,则这一部分贡献为 \[
\sum_D \text{cnt}[D]\cdot
Q\left(\left\lfloor\frac{P}{D}\right\rfloor\right).
\]
5.2 大 \(n>N\) :改为枚举无平方因子 \(s\)
当 \(n>N\) 时,因 \(x\ge n\) ,\(\displaystyle{D(n,x)\ge 3n^2\Rightarrow s\le
\left\lfloor\frac{P}{3n^2}\right\rfloor.}\) 令\(\displaystyle{S_{\max}=\left\lfloor\frac{P}{3(N+1)^2}\right\rfloor},\)
所以对所有 \(n>N\) 的三角形,其
\(s\) 一定不超过 \(S_{\max}\) 。
于是我们改为遍历每个无平方因子 \(s\le
S_{\max}\) ,令\(B=\left\lfloor\dfrac{P}{s}\right\rfloor,\) 需要统计满足\(n>N, n\le x<\varphi n, D(n,x)\le
B\) 的整数对 \((n,x)\) 个数,记为
\(F(B)\) ,并累加
\[
\sum_{\substack{1\le s\le S_{\max} \\ s\text{ squarefree}}}
F\left(\left\lfloor\frac{P}{s}\right\rfloor\right).
\]
对固定 \(B\) ,对每个 \(n\) ,不等式\(x^2+n x+(n^2-B)\le 0\) 给出上界\(x\le
\left\lfloor\dfrac{-n+\sqrt{4B-3n^2}}{2}\right\rfloor.\) 再与
\(x<\varphi n\)
的上界取最小即可。
实现时,为了避免在 \(n\)
循环里频繁开方,用判别式单调递减的性质维护\(\Delta(n)=4B-3n^2\) 及其整数平方根 \(\lfloor\sqrt{\Delta(n)}\rfloor\) ,每次
\(n\)
增加只需少量递减修正即可,大幅加速。
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 #include <bits/stdc++.h> #include "tools.h" using namespace std;typedef long long ll;const ll P = 25000000000000ll ;inline ll icbrt_ll (ll x) { long double d = pow ((long double )x, 1.0L / 3.0L ); ll r = (ll)d; auto cube = [&](ll t) -> ll { return (ll)t * t * t; }; while (cube (r + 1 ) <= x) ++r; while (cube (r) > x) --r; return r; } void mobius_sieve (int LIM, vector<int8_t > &mu, vector<int > &mertens, vector<int > &sqfree_prefix) { mu.assign (LIM + 1 , 0 ); mertens.assign (LIM + 1 , 0 ); sqfree_prefix.assign (LIM + 1 , 0 ); vector<int > primes; vector<int > lp (LIM + 1 , 0 ) ; mu[1 ] = 1 ; for (int i = 2 ; i <= LIM; ++i) { if (lp[i] == 0 ) { lp[i] = i; primes.push_back (i); mu[i] = -1 ; } for (int p : primes) { ll v = 1LL * i * p; if (v > LIM) break ; lp[(int )v] = p; if (i % p == 0 ) { mu[(int )v] = 0 ; break ; } else { mu[(int )v] = (int8_t )(-mu[i]); } } } for (int i = 1 ; i <= LIM; ++i) { mertens[i] = mertens[i - 1 ] + (int )mu[i]; sqfree_prefix[i] = sqfree_prefix[i - 1 ] + (mu[i] != 0 ); } } int PREF_LIMIT = 0 ;vector<int8_t > MU; vector<int > MERTENS; vector<int > SQFREE_PREFIX; ll count_sqfree (ll x) { if (x <= (ll)PREF_LIMIT) return (ll)SQFREE_PREFIX[(int )x]; ll r = int_square (x); ll B = icbrt_ll (x); if (B > r) B = r; ll res = 0 ; for (ll i = 1 ; i <= B; ++i) { res += (ll)MU[(int )i] * (ll)(x / (i * i)); } ll maxv = x / ((B + 1 ) * (B + 1 )); for (ll v = 1 ; v <= maxv; ++v) { ll R = int_square (x / v); ll L = int_square (x / (v + 1 )) + 1 ; if (R <= B) continue ; if (L <= B) L = B + 1 ; if (L <= R) { res += (ll)v * (ll)(MERTENS[(int )R] - MERTENS[(int )L - 1 ]); } } return (ll)res; } int main () { const int N = 3000 ; const ll nMaxAll = int_square (P / 3 ); const ll Smax = P / (3ll * (ll)(N + 1 ) * (ll)(N + 1 )); PREF_LIMIT = 10000000 ; const int MU_LIMIT = max <int >(PREF_LIMIT, (int )(nMaxAll + 5 )); mobius_sieve (MU_LIMIT, MU, MERTENS, SQFREE_PREFIX); vector<int > xphi ((size_t )nMaxAll + 1 , 0 ) ; vector<ll> prefix_phi ((size_t )nMaxAll + 1 , 0 ) ; const long double phi = (1.0L + sqrtl (5.0L )) / 2.0L ; for (ll n = 1 ; n <= nMaxAll; ++n) { ll x = (ll)(phi * (long double )n); auto ok = [&](ll xx) -> bool { ll nn = (ll)n; ll xh = (ll)xx; return nn * nn + nn * xh > xh * xh; }; while (ok (x + 1 )) ++x; while (!ok (x)) --x; xphi[n] = (int )x; ll cnt = (x >= n) ? (x - n + 1 ) : 0 ; prefix_phi[n] = prefix_phi[n - 1 ] + cnt; } const int D_LIMIT = 6 * N * N + 5 ; vector<int > cntD (D_LIMIT + 1 , 0 ) ; for (int n = 1 ; n <= N; ++n) { int xhi = xphi[n]; for (int x = n; x <= xhi; ++x) { int D = n * n + n * x + x * x; ++cntD[D]; } } ll ans = 0 ; for (int D = 1 ; D <= D_LIMIT; ++D) { int c = cntD[D]; if (!c) continue ; ll q = P / (ll)D; ans += (ll)c * count_sqfree (q); } const long double C = 3.0L + sqrtl (5.0L ); auto D_at_phi = [&](ll n) -> ll { ll x = (ll)xphi[n]; return (ll)n * n + (ll)n * x + (ll)x * x; }; for (ll s = 1 ; s <= Smax; ++s) { if (MU[(int )s] == 0 ) continue ; ll B = P / s; ll nmax = int_square (B / 3ll ); if (nmax <= (ll)N) continue ; ll fll_end = (ll)sqrtl ((long double )B / C); if (fll_end > nmax) fll_end = nmax; while (fll_end + 1 <= nmax && D_at_phi (fll_end + 1 ) <= (ll)B) ++fll_end; while (fll_end >= 1 && D_at_phi (fll_end) > (ll)B) --fll_end; ll add = 0 ; if (fll_end > (ll)N) { add += prefix_phi[fll_end] - prefix_phi[N]; } ll start = max <ll>((ll)N + 1 , fll_end + 1 ); if (start <= nmax) { ll n = start; ll disc = 4ll * B - 3ll * n * n; ll y = int_square (disc); for (; n <= nmax; ++n) { if (n != start) { disc -= 3ll * (2ll * n - 1ll ); while ((ll)y * y > (ll)disc) --y; } ll xq = (ll)((y - n) / 2ll ); ll xup = xq; int xph = xphi[n]; if (xup > xph) xup = xph; if (xup >= (ll)n) add += (ll)(xup - (ll)n + 1 ); } } ans += add; } cout << ans << "\n" ; return 0 ; }