Let represent the number of
different ways in which coins can
be separated into piles. For example, five coins can separated into
piles in exactly seven different ways, so .
1 2 3 4 5 6 7
OOOOO OOOO O OOO OO OOO O O OO OO O OO O O O O O O O O
Find the least value of for
which is divisible by one
million.
a(n) - a(n-1) - a(n-2) + a(n-5) + a(n-7) - a(n-12) - a(n-15) + ... = 0, where the sum is over n-k and k is a generalized pentagonal number (A001318) <= n and the sign of the k-th term is (-1)^([(k+1)/2]). See A001318 for a good way to remember this!
defgen_pentagonal(): for i in count(1, 1): yield i * (3 * i - 1) // 2 yield i * (3 * i + 1) // 2
p = [1]
for n in count(1, 1): i = 0 val = 0 for m in gen_pentagonal(): if m > n: break sgn = i >> 1 & 1 if sgn == 0: val = (val + p[n - m]) % mod else: val = (val - p[n - m] + mod) % mod i += 1 if val == 0: ans = n break p.append(val) print(ans)