Project Euler 63
Project Euler 63
题目
Powerful digit counts
The $5$-digit number, $16807=7^5$, is also a fifth power. Similarly, the $9$-digit number, $134217728=8^9$, is a ninth power.
How many $n$-digit positive integers exist which are also an $n^\text{th}$ power?
解决方案
可以发现,$10^n$是一个$n+1$位数。因此,如果一个数$a^n$为$n$位数,那么$a\leq 9$。
当$9^n$的位数小于$n$位时,统计结束。(因为$n$就算增加$1$,$9^n$再乘一个$9$,也没办法使积的位数增加多于$1$位,变成$n+1$位)。
代码
1 | from itertools import count |