Project Euler 609

Project Euler 609

题目

\(\pi\) sequences

For every \(n \ge 1\) the prime-counting function \(\pi(n)\) is equal to the number of primes not exceeding \(n\).

E.g. \(\pi(6)=3\) and \(\pi(100)=25\).

We say that a sequence of integers \(u = (u_0,\cdots,u_m)\) is a \(\pi\) sequence if

  • \(u_n \ge 1\) for every \(n\)
  • \(u_{n+1}= \pi(u_n)\)
  • \(u\) has two or more elements

For \(u_0=10\) there are three distinct \(\pi\) sequences: \((10,4), (10,4,2)\) and \((10,4,2,1)\).

Let \(c(u)\) be the number of elements of \(u\) that are not prime.

Let \(p(n,k)\) be the number of \(\pi\) sequences \(u\) for which \(u_0\le n\) and \(c(u)=k\).

Let \(P(n)\) be the product of all \(p(n,k)\) that are larger than \(0\).

You are given: \(P(10)=3\times8\times9\times3=648\) and \(P(100)=31038676032\).

Find \(P(10^8)\). Give your answer modulo \(1000000007\).

解决方案

利用线性筛生成所有质数,并直接计算出函数\(\pi\)的值。\(u\)序列直接通过迭代\(\pi\)值产生。

注意到,对于相邻两个质数\(p,q\),发现\(\pi(p)=\pi(p+1)=\pi(p+2)=\dots=\pi(q-1)\)。因此,同时处理开头为\(p\sim q-1\)\(u\)序列。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int N=100000000;
const int M=4*log2(N+4);
int s[N+4];
int v[N+4],pr[N+4],m=0;
int cnt[M+4];
ll mod=1e9+7;
int main(){
for(int i=2;i<=N;i++){
if(v[i]==0) v[i]=i,pr[++m]=i;
for(int j=1;j<=m;j++){
if(pr[j]>v[i]||pr[j]>N/i) break;
v[i*pr[j]]=pr[j];
}
s[i]=s[i-1]+(v[i]==i);
}
for(int i=1;i<=m;i++){
int l=pr[i],r=(i==m?N:pr[i+1]-1);
int c=0;
for(int j=s[l];j;j=s[j]){
if(v[j]!=j) ++c;
cnt[c+1]+=r-l;
++cnt[c];
if(j==1) break;
}
}
ll ans=1;
for(int j=0;j<=M;j++)
if(cnt[j]>0) ans=ans*cnt[j]%mod;
printf("%lld\n",ans);
}
如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!
Ujimatsu Chiya 微信 微信
Ujimatsu Chiya 支付宝 支付宝