Project Euler 587
Project Euler 587
题目
Concave triangle
A square is drawn around a circle as shown in the diagram below on the left. We shall call the blue shaded region the L-section.
A line is drawn from the bottom left of the square to the top right as shown in the diagram on the right.
We shall call the orange shaded region a concave triangle.
It should be clear that the concave triangle occupies exactly half of the L-section.
Two circles are placed next to each other horizontally, a rectangle is drawn around both circles, and a line is drawn from the bottom left to the top right as shown in the diagram below.
This time the concave triangle occupies approximately \(36.46\%\) of the L-section.
If \(n\) circles are placed next to each other horizontally, a rectangle is drawn around the \(n\) circles, and a line is drawn from the bottom left to the top right, then it can be shown that the least value of \(n\) for which the concave triangle occupies less than \(10\%\) of the L-section is \(n = 15\).
What is the least value of \(n\) for which the concave triangle occupies less than \(0.1\%\) of the L-section?
解决方案
这里假设每个圆的半径都为\(1\)。
不难计算出,原本的L-section面积为\(S_0=1-\dfrac{\pi}{4}\)。
假设题目中所求的圆的个数为\(k\)。以下图为例,此时的\(k=3\)。
以\(O\)为原点,\(OC\)为\(x\)轴正方向建立平面直角坐标系,那么\(\odot P\)的方程为\((x-1)^2+(y-1)^2=1\),\(OB\)为\(y=\dfrac{x}{k}\)。
联立\(OB\)和\(\odot P\)的方程,得到:
\[(k^2+1)x^2-2k(k+1)x+k^2=0\]
那么通过二次方程的求根公式,可以解出\(A\)的坐标。假设其为\((x_0,y_0)\)。
那么凹三角形\(OAC\)就被直线\(x=x_0\)分成了两部分,一部分是左边的直角三角形,面积为\(\dfrac{x_0y_0}{2}\)。另一部分通过积分进行计算,面积为\(I\),其中
\[\begin{aligned} I&=\int_{x_0}^1 1-\sqrt{1-(x-1)^2}dx\\ &=\int_{x_0-1}^01-\sqrt{1-x^2}dx\\ &=\int_{0}^{1-x_0}1-\sqrt{1-x^2}dx\\ &=1-x_0-\int_{0}^{1-x_0}\sqrt{1-x^2}dx \end{aligned}\]
经过查表,\(\int \sqrt{1-x^2}dx=\dfrac{1}{2}(\arcsin x+x\sqrt{1-x^2})+C\)
因此
\[I=1-x_0-\dfrac{1}{2}(\arcsin (1-x_0)+(1-x_0)\sqrt{1-(1-x_0)^2})\]
因此凹三角形\(OAC\)的总面积为
\[S_k=\dfrac{x_0y_0}{2}+1-x_0-\dfrac{1}{2}(\arcsin (1-x_0)+(1-x_0)\sqrt{1-(1-x_0)^2})\]
那么题目所求比例值为\(\dfrac{S_k}{S_0}\)。
随着\(k\)越大,值\(\dfrac{S_k}{S_0}\)越小,这个值具有单调性。为了找到符合题目要求的最小\(k\),考虑使用二分查找算法解决。
代码
1 | from math import pi, asin |