Project Euler 493
Project Euler 493
题目
Under The Rainbow
\(70\) colored balls are placed in an urn, \(10\) for each of the seven rainbow colors.
What is the expected number of distinct colors in \(20\) randomly picked balls?
Give your answer with nine digits after the decimal point (a.bcdefghij).
解决方案
假设每一组有\(m=10\)个球,一共有\(g=7\)组,一次取出\(p=20\)个球。
令\(X_i\)表示第\(i\)种颜色的球出现的示性随机变量。如果\(X_i=1\),那么就说明第\(i\)种颜色出现了,如果\(X_i\)为\(0\),那么第\(i\)种颜色没有出现。
那么,最终出现颜色个数的期望为
\[e=E[\sum_{i=1}^gX_i]=\sum_{i=1}^gE[X_i]\]
不失一般性,对于第\(1\)种颜色的球,它被抽出来的概率为\(1-\dfrac{\binom{m(g-1)}{p}}{\binom{mg}{p}}\)。
因此,\(E[X_1]=1-\dfrac{\binom{m(g-1)}{p}}{\binom{mg}{p}}\)
由于所有颜色的球的数量都是一样的,因此\(E[X_1]=E[X_2]=\dots=E[X_g]\)。
因此最终答案为
\[e=\sum_{i=1}^gE[X_i]=gE[X_1]=g\left(1-\dfrac{\binom{m(g-1)}{p}}{\binom{mg}{p}}\right)\]
代码
1 | from tools import C |