Project Euler 359

Project Euler 359

题目

Hilbert’s New Hotel

An infinite number of people (numbered \(1, 2, 3,\) etc.) are lined up to get a room at Hilbert’s newest infinite hotel. The hotel contains an infinite number of floors (numbered \(1, 2, 3,\) etc.), and each floor contains an infinite number of rooms (numbered \(1, 2, 3,\) etc.).

Initially the hotel is empty. Hilbert declares a rule on how the n^th person is assigned a room: person n gets the first vacant room in the lowest numbered floor satisfying either of the following:

  • the floor is empty
  • the floor is not empty, and if the latest person taking a room in that floor is person m, then m + n is a perfect square

Person \(1\) gets room \(1\) in floor \(1\) since floor \(1\) is empty. Person \(2\) does not get room \(2\) in floor \(1\) since \(1 + 2 = 3\) is not a perfect square. Person \(2\) instead gets room \(1\) in floor \(2\) since floor \(2\) is empty. Person \(3\) gets room \(2\) in floor \(1\) since \(1 + 3 = 4\) is a perfect square.

Eventually, every person in the line gets a room in the hotel.

Define \(P(f, r)\) to be \(n\) if person \(n\) occupies room \(r\) in floor \(f\), and \(0\) if no person occupies the room. Here are a few examples:

\(\begin{aligned} &P(1, 1) = 1\\ &P(1, 2) = 3\\ &P(2, 1) = 2\\ &P(10, 20) = 440\\ &P(25, 75) = 4863\\ &P(99, 100) = 19454 \end{aligned}\)

Find the sum of all \(P(f, r)\) for all positive \(f\) and \(r\) such that \(f \times r = 71328803586048\) and give the last \(8\) digits as your answer.

解决方案

通过暴力枚举前几项,可以在OEIS查询到结果为A083362

找到FORMULA一栏,给出了如下信息:

1
T(0, k) = (k+1)*(k+2)/2 for k>=0, T(n, 0) = floor((n+1)^2/2) for n>0, T(n, k+1) = (2*floor((n+1)/2) + k+1)^2 - T(n, k) for n>0 and k>=0.

这些信息给出的公式是以\(0\)为初始下标的。转化成以\(1\)为初始下标后,有

\[ p(f,r)= \left \{\begin{aligned} &\dfrac{r(r+1)}{2} & & \text{if}\quad f=1 \\ &\left\lfloor\dfrac{f^2}{2}\right\rfloor & & \text{else if}\quad f>1\land r=1 \\ &\left(2\cdot\left\lfloor\dfrac{f}{2}\right\rfloor+r-1\right)^2-p(f,r-1) & & \text{else} \end{aligned}\right. \]

可以看到第三条式子是一个递推式,为了加速计算的过程,我们考虑将它改写成通式。

通过Mathematica输入以下代码:

1
RSolve[{p[r] + p[r - 1] == (2*Floor[f/2] + r - 1)^2, p[1] == Floor[f^2/2]}, p[r], r]

运行后得出一个很长的式子。经过化简,得到通项公式:

\[ p(f,r)= \left \{\begin{aligned} &\dfrac{r(r+1)}{2} & & \text{if}\quad f=1 \\ &\dfrac{r(r-1)}{2} +\left\lfloor\dfrac{f}{2}\right\rfloor\cdot\left(\left\lfloor\dfrac{f}{2}\right\rfloor+r-(r+f)\%2\right)& & \text{else} \end{aligned}\right. \]

直接进行计算即可。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from tools import divisors

N = 71328803586048
mod = 10 ** 9


def P(f, r):
if f == 1:
return r * (r + 1) // 2
else:
return r * (r - 1) // 2 + f // 2 * (f // 2 + r - (r + f) % 2) * 2


ans = sum(P(d, N // d) for d in divisors(N)) % mod
print(ans)