Project Euler 329
Project Euler 329
题目
Prime Frog
Susan has a prime frog.
Her frog is jumping around over \(500\) squares numbered \(1\) to \(500\).
He can only jump one square to the left or to the right, with equal probability, and he cannot jump outside the range \([1;500]\). (if it lands at either end, it automatically jumps to the only available square on the next move.)
When he is on a square with a prime number on it, he croaks 'P' (PRIME) with probability \(2/3\) or 'N' (NOT PRIME) with probability \(1/3\) just before jumping to the next square.
When he is on a square with a number on it that is not a prime he croaks 'P' with probability \(1/3\) or 'N' with probability \(2/3\) just before jumping to the next square.
Given that the frog's starting position is random with the same probability for every square, and given that she listens to his first \(15\) croaks, what is the probability that she hears the sequence PPPPNNPPPNPPNPN?
Give your answer as a fraction \(p/q\) in reduced form.
解决方案
不难想到使用动态规划的方法来做。
令\(M=500\),\(s\)是PPPPNNPPPNPPNPN这个字符串本身,下标从\(0\)开始,\(N\)是这个字符串的长度。本题需要注意的一点是,这只青蛙是先叫出字母,然后再进行移动。
假设\(f(i,j)(0\le i\le N,1\le j\le M)\)为青蛙已经正确地叫出了前\(i\)个字母,并且已经跳到了第\(j\)个格子的概率。那么不难写出如下状态转移方程:
\[ f(i,j)= \left \{\begin{aligned} &\dfrac{1}{M} & & \text{if}\quad i=0 \\ &f(i-1,j+1)\cdot q_M(j+1)\cdot p(j+1,s[i-1]) & & \text{else if}\quad j=1 \\ &f(i-1,j-1)\cdot q_M(j-1)\cdot p(j-1,s[i-1]) & & \text{else if}\quad j=M \\ &f(i-1,j+1)\cdot q_M(j+1)\cdot p(j+1,s[i-1])+f(i-1,j-1)\cdot q_M(j-1)\cdot p(j-1,s[i-1])& & \text{else} \end{aligned}\right. \]
其中,\(q_M(j)\)表示如果\(j\)等于\(1\)或者是\(M\),那么\(q_M(j)=1\),否则\(q_M(j)=\dfrac{1}{2}\);\(p(n,c)\)表示如果\(n\)的素性符合字母\(c\)的描述,那么\(p(n,c)=\dfrac{2}{3}\),否则\(p(n,c)=\dfrac{1}{3}\).
其中方程最后一行说明,第\(j\)个格子要么是从\(j-1\)以\(q_M(j)\)的概率跳过来的,并且有\(p(j-1,s[i-1])\)的概率叫出对应的字母;要么是从\(j+1\)跳过来的。
那么本题的最终答案为\(\sum_{i=1}^M f(N,i)\)。
为了方便代码编写,我这里使用的方法是“我为人人”式动态规划。
代码
1 | from fractions import Fraction |