Project Euler 32

Project Euler 32

题目

Pandigital products

We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigital.

The product 7254 is unusual, as the identity, 39×186=7254, containing multiplicand, multiplier, and product is 1 through 9 pandigital.

Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital.

HINT: Some products can be obtained in more than one way so be sure to only include it once in your sum.

解决方案

先枚举第 1 个因数,后枚举第 2 个因数。再判断两个因数和积拼接后的长度是否会大于 9.

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from itertools import count

N = 1000
c = "123456789"
st = set()
for i in range(1, N):
for j in count(i + 1, 1):
s = str(i) + str(j) + str(i * j)
if len(s) > 9:
break
t = "".join((lambda x: (x.sort(), x)[1])(list(s)))
if t == c:
st.add(i * j)
ans = sum(st)
print(ans)

如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!
Ujimatsu Chiya 微信 微信
Ujimatsu Chiya 支付宝 支付宝