Project Euler 246
Project Euler 246
题目
Tangents to an ellipse
A definition for an ellipse is:
Given a circle \(c\) with centre \(M\) and radius \(r\) and a point \(G\) such that \(d(G,M)<r\), the locus of the points that are equidistant from \(c\) and \(G\) form an ellipse.
The construction of the points of the ellipse is shown below.
Given are the points \(M(-2000,1500)\) and \(G(8000,1500)\).
Given is also the circle \(c\) with centre \(M\) and radius \(15000\).
The locus of the points that are equidistant from \(G\) and \(c\) form an ellipse \(e\).
From a point \(P\) outside \(e\) the two tangents \(t_1\) and \(t_2\) to the ellipse are drawn.
Let the points where \(t_1\) and \(t_2\) touch the ellipse be \(R\) and \(S\).
For how many lattice points \(P\) is angle \(RPS\) greater than \(45\) degrees?
解决方案
\(|EG|=|EU|\),\(|EU|+|EM|=r\),因此\(|EG|+|EM|=r=2a\),其中\(2a\)是椭圆的长轴长度,焦距\(2c=d(G,M)\)。由于椭圆的中心也在个点,那么为了方便处理问题,将椭圆的中心挪到原点,那么可以写成椭圆的标准方程:
\[\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\]
其中\(a=7500,c=5000,b^2=a^2-c^2\)。
那么,由于椭圆关于两个坐标轴对称,因此只考虑第一象限以及\(x,y\)轴正半轴上的格点。
对于圆外任意一点\(P(x_0,y_0)\),那么该点的点斜式方程为\(y-y_0=k(x-x_0)\),那么和椭圆方程联立,得到一个关于\(x\)的一元二次方程:
\[(a^2k^2+b^2)x^2+(2a^2ky_0x-2a^2k^2x_0)x+a^2y_0^2-2a^2kx_0y_0+a^2k^2x_0^2-a^2b^2=0\]
由于所求直线为切线,因此令其\(\Delta=0\),得到关于\(k\)的一元二次方程:
\[(x_0^2 - a^2)k^2-2x_0y_0k+y_0^2-b^2=0\]
也就是说,\(k\)不同的两个解对应着直线的斜率,不失一般性,假设其分别为\(k_0,k_1\)。那么这两条直线夹角的正切值为\(\left|\dfrac{k_1-k_0}{1+k_0k_1}\right|\)。
解决本题时,还采用了一个假设:当\(\angle RPS=45°\)时,\(P\)点的轨迹\(\Gamma\)是一个凸曲线。(如果\(\dfrac{a}{b}\)值太大,那么\(\Gamma\)将不会是一个凸曲线,我在这里没有进行太多的研究。)
因此,枚举所有\(x_0\ge0\),二分查找\(y_0\)使其恰好在\(\Gamma\)外部。那么,\(y_0\)以下(不包括\(y_0\))的所有点都是答案,不过,这需要排除在椭圆内部的点。
代码
1 | from math import ceil, sqrt |