Project Euler 175
Project Euler 175
题目
Fractions involving the number of different ways a number can be expressed as a sum of powers of 2
Define \(f(0)=1\) and \(f(n)\) to be the number of ways to write \(n\) as a sum of powers of \(2\) where no power occurs more than twice.
For example, \(f(10)=5\) since there are five different ways to express \(10\):
\(10 = 8+2 = 8+1+1 = 4+4+2 = 4+2+2+1+1 = 4+4+1+1\)
It can be shown that for every fraction \(\dfrac{p}{q} (p>0, q>0)\) there exists at least one integer \(n\) such that \(\dfrac{f(n)}{f(n-1)}=\dfrac{p}{q}\).
For instance, the smallest \(n\) for which \(\dfrac{f(n)}{f(n-1)}=\dfrac{13}{17}\) is \(241\).
The binary expansion of \(241\) is \(11110001\).
Reading this binary number from the most significant bit to the least significant bit there are \(4\) one’s, \(3\) zeroes and \(1\) one. We shall call the string \(4,3,1\) the Shortened Binary Expansion of \(241\).
Find the Shortened Binary Expansion of the smallest \(n\) for which \(\dfrac{f(n)}{f(n-1)}=\dfrac{123456789}{987654321}\).
Give your answer as comma separated integers, without any whitespaces.
解决方案
利用前几项查询OEIS,结果为A002487(至于式子的推导,已经在169题中给出)。那么对于所有\(n>1\),可以写成\(f(2n)=f(n),f(2n-1)=f(n)+f(n-1)\),其中\(f(0)=0,f(1)=f(2)=1\)。
对于同一个\(n\)下的两个式子作商,有
\[\dfrac{f(2n-1)}{f(2n)}=\dfrac{f(n)+f(n-1)}{f(n)}=1+\dfrac{f(n-1)}{f(n)}\]
通过这个式子,不难发现,当任意一个数\(m\)满足\(f(m-1)>f(m)\)时,\(m\)为奇数,也就是\(m\)的二进制下最低位为\(1\),否则\(m\)为偶数,最低位为\(0\)(此时需要将分式的分子分母交换)。\(m\)接下来的次低位则通过上面的式子的右边的那个分式\(\dfrac{f(n-1)}{f(n)}\)决定。这启发我们使用辗转相除法解决这个问题。
回到题目中,题目询问的分式是\(\dfrac{f(n)}{f(n-1)}\),那么和上面的讨论结果相反:如果当前分数的分子比分母小,那么\(n\)的低位为\(1\),并且用分母减去分子;否则为\(0\),用分子减去分母。\(n\)的数位从后向前填入。
需要注意的是,如果填入的最高位是\(0\),那么最高位需要变成\(1\)。
代码
1 | a, b = 123456789, 987654321 |