Project Euler 174
Project Euler 174
题目
Counting the number of “hollow” square laminae that can form one, two, three, … distinct arrangements
We shall define a square lamina to be a square outline with a square “hole” so that the shape possesses vertical and horizontal symmetry.
Given eight tiles it is possible to form a lamina in only one way: $3\times 3$ square with a $1\times1$ hole in the middle. However, using thirty-two tiles it is possible to form two distinct laminae.

If $t$ represents the number of tiles used, we shall say that $t = 8$ is type $L(1)$ and $t = 32$ is type $L(2)$.
Let $N(n)$ be the number of $t \le 1000000$ such that $t$ is type $L(n)$; for example, $N(15)$ = $832$.
What is $\sum N(n)$ for $1 \le n \le 10$?
解决方案
与173题一样,令$N=1000000$。假设内部的正方形边长为$a$,边框的宽度为$d$,那么大正方形的边长为$2d+a$,这个边框使用了$(2d+a)^2-a^2=4d(a+d)$个正方形。
计算出的式子有常数因子$4$,因此只需要$\dfrac{N}{4}$的空间。因此,直接枚举式子$a(a+d)$的值并统计即可。
代码
1 |
|