Project Euler 140
Project Euler 140
题目
Modified Fibonacci golden nuggets
Consider the infinite polynomial series \(A_G(x) = x G_1 + x^2 G_2 + x^3 G_3 + \cdots\), where \(G_k\) is the \(k\)th term of the second order recurrence relation \(G_k = G_{k-1} + G_{k-2}\), \(G_1 = 1\) and \(G_2 = 4\); that is, \(1, 4, 5, 9, 14, 23, \dots\) .
For this problem we shall be concerned with values of \(x\) for which \(A_G(x)\) is a positive integer.
The corresponding values of \(x\) for the first five natural numbers are shown below.
\(x\) | \(A_G(x)\) |
---|---|
\(\dfrac{\sqrt{5}-1}{4}\) | \(1\) |
\(\dfrac{2}{5}\) | \(2\) |
\(\dfrac{\sqrt{22}-2}{6}\) | \(3\) |
\(\dfrac{\sqrt{137}-5}{14}\) | \(4\) |
\(\dfrac{1}{2}\) | \(5\) |
We shall call \(A_G(x)\) a golden nugget if \(x\) is rational, because they become increasingly rarer; for example, the 20th golden nugget is \(211345365\).
Find the sum of the first thirty golden nuggets.
解决方案
和137题一样,有
\[ \begin{aligned} A_G(x) & =xG_1+ & x^2G_2+x^3G_3+\dots \\ xA_G(x) & = & x^2G_1+x^3G_2+\dots\\ (1+x)A_G(x) &=xG_1+ &x^2G_3+x^3G_4+\dots\\ \end{aligned} \]
可以发现,第三条式子用了定义:\(G_n=G_n-1+G_n-2\)。
将\(A_F(x)\)代入第三条式子右侧,有:
\[ (1+x)A_G(x)=xG_1+\dfrac{A_G(x)}{x}-G_1-xG_2 \]
代入\(G_1=1,G_2=4\),化简后,有:
\[A_G(x)=\dfrac{3x^2+x}{1-x-x^2}\]
令\(A_F(x)=n\),\(n\)是一个正整数,有:\(3x^2+x=n(1-x-x^2)\)
化成关于\(x\)的一元二次方程,有\((n+3)x^2+(n+1)x-n=0\)
如果\(x\)是一个有理数,那么其判别式\(\Delta\)必须是有理数。也就是\((n+1)^2-4n^2=5n^2+2n+1\)必须是一个平方数。
如果方程的解\(x\)是一个有理数,那么其判别式\(\Delta\)必须是有理数。也就是\((n+1)^2+4n(n+3)=5n^2+14n+1\)必须是一个平方数。
因此,令正整数\(y\)满足\(y^2=5n^2+14n+1\)。
两边同乘\(5\),并配方,得\(25n^2+70n+49-44=m^2\)
移项,得:\((5n+7)^2-5y^2=44\)
令\(x=5n+7\),那么得到\(x^2-5y^2=44\)。这种广义佩尔方程和137题不同的是,后面的\(N\)变成\(44\)了。
经过一定范围的搜索,发现这个方程有\(6\)个基本解:
\((7,1),(8,2),(13,5),(17,7),(32,14),(43,19)\)
使用与第137题类似的方法,每一组\(x^2-5y^2=44\)的通解由它的一个基础解\((x_1,y_1)\)和\(x^2-5y^2=1\)的通解\((a_k,b_k)\)得到。
\[\left \{\begin{aligned} & x_{k+1}=x_1a_k+Dy_1b_k\\ & y_{k+1}=y_1a_k+x_1b_k \end{aligned}\right. \]
将求出的\(x\)回代\(n=\dfrac{x-7}{5}\)。第\(15\)小的正整数\(n\)为所求。
代码
1 | N = 30 |