Project Euler 103

Project Euler 103

题目

Special subset sums: optimum

Let \(S(A)\) represent the sum of elements in set \(A\) of size \(n\). We shall call it a special sum set if for any two non-empty disjoint subsets, \(B\) and \(C\), the following properties are true:

  1. \(S(B) \neq S(C)\); that is, sums of subsets cannot be equal.
  2. If \(B\) contains more elements than \(C\) then \(S(B) > S(C)\).

If \(S(A)\) is minimised for a given \(n\), we shall call it an optimum special sum set. The first five optimum special sum sets are given below.

\(\begin{aligned} n = 1&: \{1\} \\ n = 2&: \{1, 2\} \\ n = 3&: \{2, 3, 4\} \\ n = 4&: \{3, 5, 6, 7\} \\ n = 5&: \{6, 9, 11, 12, 13\} \\ \end{aligned}\)

It seems that for a given optimum set, \(A = {a_1, a_2, \dots , a_n}\), the next optimum set is of the form \(B = {b, a_1+b, a_2+b, \dots ,a_n+b}\), where \(b\) is the "middle" element on the previous row.

By applying this "rule" we would expect the optimum set for \(n=6\) to be \(A = \{11, 17, 20, 22, 23, 24\}\), with \(S(A) = 117\). However, this is not the optimum set, as we have merely applied an algorithm to provide a near optimum set. The optimum set for \(n=6\) is \(A = \{11, 18, 19, 20, 22, 25\}\), with \(S(A) = 115\) and corresponding set string: \(111819202225\).

Given that \(A\) is an optimum special sum set for \(n=7\), find its set string.

NOTE: This problem is related to Problem 105 and Problem 106.

解决方案

一个推论:如果一个集合满足题目中的第一个条件,那么它们的所有\(2^n\)个子集\(I\)\(S(I)\)都不相同。

使用反证法:设一个集合\(A\),对于\(A\)中的两个子集\(I,J\),满足\(S(I)=S(J)\),有以下两种情况

  1. \(I \cap J = \varnothing\):那么明显\(A\)集合不符合要求。
  2. \(I \cap J \ne \varnothing\):此时取\(I'=I-J,J'=J-I\),根据集合差运算的定义,有\(S(I')=S(I)-S(I \cap J),S(J')=S(J)-S(I \cap J)\)。可以知道,此时\(I' \cap J' = \varnothing\),但有\(S(I')=S(J')\),不符合要求。

因此原推论成立,判断集合是否为特殊不需要直接枚举一对不相交子集。而是产生所有子集,先判断元素和是否重复,然后根据和的大小进行排序比较集合大小即可(判断第二个条件是否满足)。

题目中介绍了一个生成特殊集合的方法,但不保证元素和是最小的。

因此,个人思路如下:

  1. 利用题目中给定的方法暂时生成一个\(n=7\)的特殊集合\(A\)
  2. 对集合中的每个元素施加一定的“扰动”(每个元素都先让它们加一或减一或不动),由此尝试找到元素和更小的特殊集合。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from itertools import product

a = [11, 18, 19, 20, 22, 25]
b = [a[len(a) // 2]]
for x in a:
b.append(20 + x)
n = len(b)
ans = list(b)


def ok(z: list):
mp = {}
for st in range(1 << n):
cnt, s = 0, 0
for i in range(n):
if st >> i & 1:
cnt += 1
s += z[i]
if s in mp.keys():
return False
mp[s] = cnt
ls = list(mp.items())
ls.sort()
for i in range((1 << n) - 1):
if ls[i][1] > ls[i + 1][1]:
return False
return True


for w in product([-1, 0, 1], repeat=n):
z = [w[i] + b[i] for i in range(n)]
if sum(z) < sum(ans) and ok(z):
ans = z
print("".join([str(x) for x in ans]))

如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!
Ujimatsu Chiya 微信 微信
Ujimatsu Chiya 支付宝 支付宝